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Abstract—Privacy-preserving (PP) applications allow users
to perform online daily actions without leaking sensitive
information. The PP scalar product (PPSP) is one of the criti-
cal algorithms in many private applications. The state-of-the-art
PPSP schemes use either computationally intensive homomorphic
(public-key) encryption techniques, such as the Paillier encryp-
tion to achieve strong security (i.e., 128 b) or random masking
technique to achieve high efficiency for low security. In this arti-
cle, lattice structures have been exploited to develop an efficient
PP system. The proposed scheme is not only efficient in computa-
tion as compared to the state-of-the-art but also provides a high
degree of security against quantum attacks. Rigorous security
and privacy analyses of the proposed scheme have been pro-
vided along with a concrete set of parameters to achieve 128-b
and 256-b security. Performance analysis shows that the scheme
is at least five orders faster than the Paillier schemes and at least
twice as faster than the existing randomization technique at 128-b
security. Also the proposed scheme requires six-time fewer data
compared to the Paillier and randomization-based schemes for
communications.

Index Terms—Lattice-based cryptography, privacy-preserving
(PP) techniques, scalar product (SP) computation.

I. INTRODUCTION

REGULATORS around the world are enforcing privacy-
by-design and privacy-by-default approaches to protect

the users’ data in rest, transit, and processing. Several service
providers and applications that traditionally use users’ data in
a plain domain to extract patterns and provide services are now
applying encrypted-domain computations. Some of the exam-
ple applications are disease classification in healthcare, data
search in the cloud, biometric verification, etc. (e.g., [1]–[8]
and references therein). The common theme across these appli-
cations is that there are two distrusting parties that want to
work on a common goal by combining both of their data while
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preserving data privacy. For example, a buyer wants to verify
his age to an online shop using a security token instead of
sending a date of birth.

There are algorithms developed in literature to support data
privacy for applications, such as classification algorithms, data
mining algorithms, distance calculations, etc. [1]–[8]. In all of
these algorithms, one party encrypts the sensitive data when-
ever that data should be sent to the other party. Hence, the
second party needs to process the received data in an encrypted
domain. This approach ensures data privacy. Regardless of
algorithms, the privacy-preserving scalar product (PPSP) has
been used as one of the privacy enabling tools between the
two parties. The intuition behind this is that a mathematical
function that relies on two different variables can be modified
into a scalar product (SP) [3], [4]. Therefore, PPSP becomes
a vital tool in most of the privacy-preserving (PP) algorithms.

Suppose, there are two parties, A and B, want to compute
the following SP:

aTb =
n∑

i=1

ai.bi

where vector a = (a1, a2, . . . , an) belongs to A and vector
b = (b1, b2, . . . , bn) belongs to B. The privacy requirement
here is that no party is allowed to learn the other’s input vector.
At the end, only one party can learn the output of the SP.

Several solutions have been proposed to address this
problem in the literature (see Section II). These solutions rely
on either public-key encryption techniques to achieve strong
security or randomization techniques for high efficiency. The
security of these schemes relies on mathematically hard prob-
lems and these solutions will be obsolete in a few years’ time
due to the rise of quantum computers as there are existing
quantum algorithms which can easily solve the mathematically
intractable problems [9]–[13].

Hence, this article exploits lattice-based cryptography to
build a PPSP. The proposed model is similar to a lattice-
based fully homomorphic encryption scheme [9] and supports
multiple encryption and addition without decryption [11].
However, the major challenge was to ensure the error terms
are not overflowed to affect the accuracy. This article proposes
a methodology to control the error terms while ensuring the
given security level, i.e., 128 b.

Lattice-based cryptography has been proven to be secure
against quantum attacks and expected to replace the existing
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public-key cryptography schemes [9]–[13]. Therefore, the
proposed solution will be secure against quantum computers
and can be used in PP algorithms for various applications to
achieve privacy. At the same time, the experimental results
(see Section VI) show that the proposed PPSP can also be
executed significantly faster than the existing PPSP schemes
at the equivalent security level.

The remainder of this article is organized as follows. The
related work is discussed in Section II. The background
information about lattice-based cryptography and its hardness
assumptions are provided in Section III. The proposed algo-
rithm is described in Section IV followed by the security
analysis and parameter selections in Section V. Experimental
results are provided in Section VI. The conclusions and future
work are discussed in Section VII.

II. LITERATURE REVIEW

The existing PPSP schemes can broadly be divided into two:
1) the schemes that are built using proven cryptography such
as homomorphic encryption and 2) the schemes that are built
based on the information theory, such as randomization and
linear algebra. Even though the latter is much efficient than
the former, the security level of the latter is not quantified.
The following sections study the state-of-the-art algorithms
for each of these schemes.

A. Homomorphic Encryption-Based PPSP

Homomorphic encryption techniques such as Paillier play
a vital role in supporting PPSP since it offers high secu-
rity such as 128 b [21]. Even though this scheme is highly
secure, it becomes inefficient with the size of the vectors, i.e.,
it may take a long time (i.e., a few minutes in modern lap-
tops with five cores and 6-GB memory) to compute the SP
when the dimension of the vectors is around 1000. Several
efficient PPSP schemes were proposed in literature to improve
the efficiency [20], [22], [24]–[30]. All these schemes use
the homomorphic PPSP scheme as a benchmark to measure
efficiency. We discuss these in the following sections.

A lattice-based functional encryption technique that predi-
cates whether the SP is equivalent to 0 or not 0 was proposed
in [18]. This work is based on lattice trapdoors [16]. If the
SP is equivalent to 0, then the trapdoors successfully remove
large elements in the problem. Note that the work in [18] is
completely different from the objective of the proposed work
on this article and the algorithm in [18] cannot be modified
to develop a PPSP scheme.

There are works that directly uses learning with errors
(LWEs)-based cryptographic scheme for encrypted-domain
matrix calculations [34]–[37]. These works treat the encryp-
tion technique as a black-box to develop several applications
ranging from logistic regression-based prediction to statistics
of smart meter reading in an encrypted domain. In contrast
to traditional homomorphic encryption such as Paillier, the
LWE-based encryption involves a number of parameters that
must be set properly for problems with different dimensions.
Otherwise, as we will show in Section III, error terms will
overflow and decryption will be unsuccessful. In this article,

we clearly show how to set up the parameters to achieve a
different level of security. Most importantly, this is the first
article that compares the performance of quantum-secure cryp-
tographic scheme against traditional homomorphic encryption
scheme and information theoretic-secure scheme and shows
that a quantum cryptographic-based scheme can outperform
the other schemes if the parameters are set properly.

B. Information Theory-Based PPSP

Du and Atallah [24] proposed a PPSP algorithm using 1-out-
of-N oblivious transfer function and homomorphic encryption.
This algorithm is based on splitting the input vector a of party
A into p number of random vectors to achieve privacy from
party B. The drawback of this method is that both parties need
to be online and interact several times to perform the SP.

Du and Zhan [25] proposed another SP which reduces the
communication complexity of their previous work [24] but
with the help of a third-party semi-trusted server. The algo-
rithm in [25] requires a third-party server to generate two
random vectors RA and RB. The vector RA will be revealed
to A and the vector RB will be revealed to B. Using these
vectors, A and B compute the shares of the SP. Hence, both
parties must reveal their shares to get the actual SP value.
The communication complexity of this protocol is four times
higher than the communication cost of SP without privacy.
Moreover, the major drawback of this work is the involve-
ment of a third party who can easily collude with one of the
parties to reveal the other party’s input vector.

Vaidya and Clifton proposed a novel PPSP solution but
without the need of a third party in [26]. The communica-
tion complexity of the algorithm in [26] is the same as [25].
However, the computation cost is O(n2) while it is O(n)

for [25]. Moreover, the security of the SP algorithm in [26]
depends on the difficulty of solving n/2 linear equations.

Amirbekyan and Estivill-Castro [27] proposed a homo-
morphic encryption and randomization (or the add vector
protocol)-based PPSP. Since 2aT .b = ∑n

i=1 a2
i +

∑n
i=1 b2

i −
(a−b)2, Amirbekyan and Estivill-Castro [27] exploited homo-
morphic encryption technique to compute a−b. Party A gener-
ates public-key and private-key pairs using any homomorphic
encryption scheme that offers additive homomorphism (i.e.,
the Pailler encryption) and encrypt the elements of vector a.
The encrypted vector and the public key are sent to party B.
Party B subtracts its vector b from encrypted a using homo-
morphic properties and obtain encrypted (a−b). Subsequently,
party B permutes and sends the elements of encrypted (a−b)

to party A. Party A decrypts the vector received from party B
and obtains the permuted (a−b). Party A also receives

∑n
i=1 b2

i
from party B. Using these, party A can compute the required
SP. Similarly, there are several variations of PPSP algorithms
proposed in literature they either use homomorphic encryption
or randomization or both [28]–[30].

One of the algorithms that is secure and lightweight to-
date is called secure and PP opportunistic computing proposed
in [20] which is proven to be faster than all the other SP and
achieve high security. In [20], the security and privacy of the
input vectors are protected by masking them by large random
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integers whose size is around 512 b. It is shown in [20] that
the computational complexity is almost negligible and com-
munication complexity is almost half compared to the Paillier
homomorphic encryption-based SP [21]. To make a fair com-
parison with the proposed scheme, we reset the parameters to
achieve 128-b security against traditional computers. Then, in
Section VI, we compare the performance of [20] against the
proposed lattice-based PPSP scheme and show that the latter
one is, at least twice as fast as the [20] algorithm.

Recently, linear algebra-based PPSP was proposed in [22]
for biometric identification. The solution proposed is efficient
and does not require parties to be online. In particular, the
solution is very useful when party A wants to outsource the
SP computation to party B.

For this scheme, party A holds both the input vectors a
and b. Initially, party A obtains a diagonal matrix A using the
input vector a followed by generating two random invertable
matrices M1 and M2 and a random lower triangular matrix
U. The encryption of the input vector a is simply a matrix
multiplication, i.e., M1UAM2. This encrypted matrix is send
to party B. Later, if party A wants to compute an SP aTb,
then party A generates a random lower triangular matrix V and
computes M−1

1 VBM−1
1 as an encryption of b where matrix B

is just a diagonal matrix of b. This encrypted matrix is sent to
party B who computes the following, which is equivalent to
aTb : Tr{M−1

1 VBM−1
2 .M1UAM2}, where Tr is a matrix trace

operation [19].
This model has been applied in various biometric authen-

tication applications. For example, recently, the work in [23]
exploited this scheme to protect biometric templates. In [23],
the user extracts biometric template a and encrypts using ran-
dom matrices as explained in the previous paragraph. Later,
if the user wants to authenticate to the server, then the user
extracts a new biometric sample, let us say b, and encrypts
using the random matrices and sends it to the server. Using
these encrypted samples (i.e., a and b), the server can find
the similarities. This model requires multiplication of sev-
eral matrices and the complexity will increase substantially
when the elements of the matrices are set to large integers to
achieve 128-b or higher security. Again, the security of these
schemes is dependent on integer factorization and vulnerable
for quantum algorithms.

III. LATTICE-BASED CRYPTOGRAPHY

Notations: We use bold lowercase letters like x to denote
column vectors; for row vectors, we use the transpose xT . We
use bold uppercase letters like A to denote matrices, and iden-
tify a matrix with its ordered set of column vectors. We denote
horizontal concatenation of vectors and/or matrices using verti-
cal bar, e.g., [A|A.x] where . denotes the matrix multiplication.
For any integer q ≥ 2, we use Zq to denote the ring of inte-
gers modulo q, Zn×m

q to denote the set of n× m matrix with
entries in Zq. We denote a real number x as x ∈ R.

A. Lattices

An m-dimensional lattice � is a full-rank discrete subgroup
of Rm [12]. Let b1, b2, . . . , bn denote the n linearly indepen-
dent vectors in Rm. Then, m-dimensional lattice � is defined

to be the set of all integer combinations of b1, b2, . . . , bn as
follows:

� =
n∑

i=1

xibi (1)

where xi ∈ Z ∀i. The set of vectors b1, b2, . . . , bn is called
basis for the lattice �, and n is called the rank of the lattice.

Without loss of generality, we consider integer lattices, i.e.,
whose points have coordinates in Zm. Among these lattices,
many cryptographic applications use a particular family of
the so-called “q-ary” integer lattices which contain qZm as
a sublattice for some small integer q. There are two different
q-ary lattices considered in many lattice-based cryptographic
applications. Let us define them as follows.

1) �⊥q (A) : For instance, for any integer q ≥ 2 and any
A ∈ Zn×m

q , a set of vectors e ∈ Zm that satisfy the following
equation:

A.e = 0 mod q (2)

forms a lattice of dimension m, which is closed under congru-
ence modulo q. This lattice is denoted by �⊥q (A) where

�⊥q (A) := {
e ∈ Zm|A.e = 0 mod q

}
. (3)

Using �⊥q (A), we define a coset or shifted lattice �u
q(A) where

�u
q(A) := {

e ∈ Zm|A.e = u mod q
}

= �⊥q (A)+ x (4)

where u ∈ Zn
q is an integer solution to

A.x = u mod q. (5)

2) �(AT): Similarly, we can define another m-dimensional
q-ary lattice, �(AT). For a set of vectors e ∈ Zm, and s ∈ Zn

q
which satisfy the following equation:

e = AT .s mod q (6)

where

�
(
AT)

:=
{

e ∈ Zm|s ∈ Zn
q s.t. e = AT .s mod q

}
. (7)

It is easy to check that �⊥q (A) and �(AT) are dual lattices.

B. Lattice Hard Problems

There are three well-known hard problems in the lattice that
have been exploited by researchers to build several crypto-
graphic applications. This section defines these hard problems
briefly.

1) Short Integer Solution: The hardness of finding a short
integer solution (SIS) was first exploited by Ajtai [10]. The
SIS has served as a foundation for many cryptographic appli-
cations, such as the one-way hash function, identification
scheme, and digital signature using lattices. The SIS can be
defined as follows.

Definition for SIS: For a given m uniformly random vectors
ai ∈ Zn

q, forming columns of a matrix A ∈ Zn×m
q , finding a
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nonzero short integer vector z ∈ Zm with norm ‖z‖ < β such
that

Az =
m∑

i=1

ai.zi = 0 mod q

is intractable.
This problem has the following useful observations.
1) Without the requirement of ‖z‖ < β, i.e., “short” solu-

tion, it is easy to find a vector z via the Gaussian
elimination that satisfies Az = 0 mod q.

2) The problem becomes easier to solve if m is increased
and difficult to solve if n is increased.

3) The norm bound β and the number m of the column vec-
tors must be large enough that a solution is guaranteed
to exist. This is the case when β >

√
n. log(q).

2) Inhomogeneous Short Integer Solution: Inhomogeneous
SIS (ISIS) is a variant of SIS. ISIS problem can be defined as
follows [11], [12].

Definition for ISIS: For a given m uniformly random vectors
ai ∈ Zn

q, forming columns of a matrix A ∈ Zn×m
q , and a

uniform random vector u ∈ Zn
q, finding a nonzero integer

vector z ∈ Zm with norm ‖z‖ < β such that

Az =
m∑

i=1

ai.zi = u mod q

is intractable.
3) Learning With Errors: LWEs [9], [13] is an encryption-

enabling lattice-based problem but similar to SIS. To enable
encryption, the LWE problem depends on a “small” error dis-
tribution over integers. The LWE is parametrised by positive
integers n and q, and a small error distribution X ∈ Zq, which
is typically be a “rounded” normal distribution with mean 0
and standard deviation (αq/2π). The constant α plays a crit-
ical role in the security of LWE and it should be chosen as
large as possible while satisfying the following condition [9]:

αq > 2
√

n. (8)

There are two versions of LWE-based problems. Before defin-
ing these, let us define a distribution called LWE-distribution
as follows.

LWE Distribution: For a given secret vector s ∈ Zn
q, a sam-

ple from LWE distribution As,X ∈ Zn
q × Zq is obtained by

choosing a vector a ∈ Zn
q uniformly at random, a small error

e ∈ X , and outputting (a, b = sTa+ e mod q).
Using the LWE distribution, we can define two versions of

the LWE problem as follows.
1) Search-LWE: Given m independent samples (ai, bi) ∈

Zn
q ×Zq drawn from the above LWE distribution As,X

for a uniformly random s ∈ Zn
q (fixed for all samples),

it is intractable to find s.
2) Decision-LWE: Given m independent samples (ai, bi) ∈

Zn
q × Zq where every sample is distributed according

to either: a) As,X for a uniformly random s ∈ Zn
q

(fixed for all samples) or b) the uniform distribution,
then distinguishing which is the case is intractable.

We can have the following observations from the two LWE
problems outlined above.

Fig. 1. Flow diagram for the proposed lattice-based PPSP computation for
binary vectors.

1) Without the error term e ∈ X , the search-LWE problem
can be solved easily using the Gaussian elimination
technique and the secret s can be recovered.

2) Similarly, for the decision-LWE problem, without the
error term e ∈ X , the Gaussian elimination technique
will reveal with high probability that no solution s exists
if it is not sampled from LWE distribution.

3) If there are m LWE samples (ai, bi)← As,X for a uni-
formly random s ∈ Zn

q (fixed for all samples), we can
combine all ais into a matrix A = [a1, a2, . . . , am] ∈
Zn×m

q , bis into a vector b = [b1, b2, . . . , bm]T , and eis
into a vector e = [e1, e2, . . . , em]T into the following
vector–matrix linear equation:

bT = sTA+ eT (mod q).

In the following sections, we will exploit the above lattice hard
problems to develop the lattice-based PPSP.

IV. LATTICE-BASED PP SCALAR PRODUCT COMPUTATION

Let us suppose, there are two distrusting entities, X and Y .
Entity X owns an m-dimensional binary vector x ∈ {0, 1}m.
Entity Y owns another m-dimensional binary vector y ∈
{0, 1}m. Both X and Y want to interact with each other to
compute the SP s = xTy without revealing their own vector
to the other party. In the end, one party obtains s = xTy.
To perform PPSP using lattice, there are four steps required.
The following sections describe each of them in detail. The
complete algorithm is given in Fig. 1.

1) System Initialization: Let us start with generating a uni-
formly random matrix A ∈ Zn×m

q which is known to X and Y .
The matrix A contains column vectors a1, a2, . . ., am ∈ Zn

q,
i.e., A = [a1, a2, . . . , am].
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2) Step 1: Entity X computes an SIS style vector using A
and the binary vector x as

u = Ax (mod q) ∈ Zn
q (9)

and sends u to Y .
3) Step 2: Entity Y generates a uniformly random vector

t ∈ Zn
q, a small error term e1 ← X , and a small error vector

e2 = [e2,1, e2,2, . . . , e2,m]T ← Xm. Then, Y computes the
following LWE style term c1 and vector c2:

c1 = tTu+ e1 (mod q) ∈ Zq (10)

cT
2 = tTA+ eT

2 + 

q

m
�yT (mod q) ∈ Z1×m

q (11)

and sends these to X.
4) Step 3: Entity X performs the following computation to

retrieve the SP value s = xTy as follows:

s =
⌊

cT
2 x− c1


 q
m�

⌉
. (12)

A. Condition for Correctness

Let us derive the condition for the above-mentioned algo-
rithm to output a correct result. In (12)

cT
2 x− c1 =

(
tTA+ eT

2 +
⌊ q

m

⌉
yT

)
x− (

tTu+ e1
)

= tTAx+ eT
2 x+

⌊ q

m

⌉
yTx− tTu− e1.

Since Ax = u, and tTAx = tTu

cT
2 x− c1 =

⌊ q

m

⌉
yTx+ eT

2 x− e1. (13)

In (13), the SP is masked by error term eT
2 x − e1. To output

a correct answer, this error term must satisfy the following
condition:

eT
2 x− e1 <

⌊ q

2m

⌉
(14)

hence

eT
2 x− e1⌊ q

m

⌉ <
1

2
. (15)

Therefore

s =
⌊

cT
2 x− c1⌊ q

m

⌉
⌉
=

⌊⌊ q
m

⌉
yTx+ eT

2 x− e1⌊ q
m

⌉
⌉
= yTx

which proves the correctness of the proposed algorithm.
Furthermore, the requirements for the error term (14) should
be analyzed and defined such that eT

2 x− e1 is always smaller
than 
(q/2m)�. To achieve this, we need to find the upper
bound for the error term. The following section is dedicated
for this analysis.

B. Upper Bound of the Error Term (eT
2 x− e1)

As we described in Section III-B3, the small error terms are
sampled from a normal distribution with mean 0 and standard
deviation (α/

√
2π) (let us denote this as �0,[α/

√
2π]) followed

by scaling and modulo reduction by q as follows:

e = 
wq�(mod q) (16)

where w← �0,(α/
√

2π) and e belongs to a “rounded” normal

distribution with mean 0 and standard deviation (αq/
√

2π)

(let us denote this as X0,[αq/
√

2π]).
Let us also denote vectors w = [w1, w2, . . . , wm] ←

�m
0,(α/

√
2π)

and w̄ = [w1, w2, . . . , wm+1] ← �m+1
0,(α/

√
2π)

.
Hence, the error vector

e = 
wq�(mod q). (17)

Using the above information, let us find the upper bound for
the error term eT

2 x − e1. Let us define an m + 1-dimensional
vector ē = [eT

2 e1]T and another m + 1 dimensional vector
x̄ = [xT − 1]T , hence, eT

2 x − e1 = ēT x̄. Using the triangle
inequality, we can define the upper bound of the error term as
follows:

∣∣eT
2 x− e1

∣∣ = ∣∣ēT x̄
∣∣ ≤ ∣∣(ē− qw̄)T x̄

∣∣+ ∣∣(qw̄)T x̄
∣∣. (18)

Using the Cauchy–Schwarz inequality [19], we can define the
upper bound for the terms in (18) as follows:

∣∣(ē− qw̄)T x̄
∣∣ < ‖ē− qw̄‖.‖x̄‖ (19)

∣∣(qw̄)T x̄
∣∣ < ‖qw̄‖.‖x̄‖. (20)

According to (16) and (17), the rounding error for the com-
ponents w is at most (1/2) (i.e., e− 
wq� ≤ [1/2]), we have
‖ē− qw̄‖ ≤ (

√
m+ 1/2) and ‖e1 − qw‖ ≤ (

√
m/2). Hence

‖ē− qw̄‖.‖x̄‖ + ‖qw̄‖.‖x̄‖ ≤
√

m+ 1

2
‖x̄‖ + ‖qw‖.‖x̄‖.

Since x̄ ∈ {0, 1}m+1, the Euclidean norm of x̄ is ‖x̄‖ ≤√
m+ 1. Hence√

m+ 1

2
‖x̄‖ + ‖qw‖.‖x̄‖ ≤ m+ 1

2
+ ‖qw‖.√m+ 1.

Since w← �m+1
0,(α/

√
2π)

and qw← Xm+1
0,(qα/

√
2π)

, if we choose
standard deviation as 4.5, then the probability

Pr

(
|qw| > 4.5× qα√

2π

)
< 2.5× 10−7

(i.e., one in four million). The probability will decrease further
if we choose a higher number of standard deviations for the
upper bound. Without loss of generality, in the rest of this
article, we consider standard deviation as 4.5. Therefore, with
very high probability

‖qw̄‖ ≤ 4.5qα

√
m+ 1

2π
. (21)

Therefore, with very high probability, the error
∣∣eT

2 x− e1
∣∣ ≤ m+ 1

2
+ ‖qw‖.√m+ 1

≤ m+ 1

2
+ 4.5qα

√
m+ 1

2π
.
√

m+ 1.
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As long as this error is smaller than 
(q/2m)�, i.e.,

m+ 1

2
+ 4.5qα

(m+ 1)√
2π
≤

⌊ q

2m

⌉
(22)

our proposed solution outputs a correct result. Hence, if the
upper bound for α is

α ≤
√

2π

4.5q(m+ 1)

[⌊ q

2m

⌉
− m+ 1

2

]
(23)

then with high probability (it may not provide correct result
one in four million times), the proposed algorithm outputs a
correct result. This concludes the proof for correctness. The
requirements for the correctness are listed in Table I.

Extending the inputs from {0,1} to integer inputs {0,1,2,
. . . , l} will lead to a smaller bin size, i.e., q/(m ∗ l2). Using
this smaller size, (14)–(23) can be revised to obtain parameters
for input {0,1,2, . . . , l}. The next section analyzes the security
of the proposed algorithm.

V. SECURITY ANALYSIS

As defined in Section IV (refer to Fig. 1), the objective is
to protect the privacy of x from Y and y from X. Entities X
and Y interact with each other to compute the SP.

First, let us prove that Y cannot learn the secret vector x
from the exchanged vector u in step 1. Since x ∈ {0, 1}m
(therefore, x is a short vector), according to the hardness of
the ISIS problem defined in Section III-B, it is intractable for
Y to solve u = Ax mod q and obtain a short vector as a
solution.

Step 1 operation is similar to hashing. Since the dimension
of typical vector x is 10 000, there are 210 000 possibilities.
The only problem is (as same as in any hashing algorithm)
the output of step 1 is deterministic for the same x.

Therefore, the brute force approach may not work for Y .
Hence, Y needs to use mathematical properties to solve the
problem to uncover x from u. In other words, if Y can recover
x from u, then Y can solve the lattice hardest problem. As
defined in Section III-B, Y cannot find a vector x shorter than
β, i.e., ‖x‖ < β. Therefore, let us analyze the shortest possible
vector which can be recovered by Y .

Suppose if Y wants to find a short vector x from u =
Ax mod q, then Y may exploit the state-of-the-art techniques
called the lattice reduction method [14] and/or combinatorial
method [15]. Denote the shortest vector which can be found
by these techniques as xs. It is proven in literature (theoreti-
cally and experimentally) [17], that the Euclidean length of xs

has a lower bound as follows:

‖xs‖ ≥ min
{

q, 22
√

n. log(q) log(δ)
}

(24)

where δ ≥ 1.01 [14]. Since the X’s secret vector x ∈ {0, 1}m,
the Euclidean length ‖x‖ ≤ √m. Hence, using (24) and
assuming q is very large, if

√
m < 22

√
n. log(q) log(δ) (25)

then Y cannot recover x from u. This is the first condition for
security. This concludes that if condition (25) is met, then Y
cannot recover x from u. Also, the cost (L) of finding a short

binary vector using the techniques described above is defined
as [17]

L ≈ 2
m
2k (26)

where k should satisfy the following equation:

2k

k + 1
≈ m

n. log(q)
. (27)

Now, let us focus whether X can recover y from the messages
c1 and c2 sent by Y to X in step 2.

According to the definition in Section III-B, if c1 and c2 are
LWE terms, then it is intractable for X to recover y since c1 and
c2 are indistinguishable from uniformly random distribution.
If t, u, and A are uniformly distributed and the error term e1
and error vector e2 are sampled from normal distribution with
standard deviation greater than 2

√
n as defined in (8), then c1

and c2 are uniformly random.
Matrix A is already a uniformly random matrix. Entity Y can

generate uniformly random t, e1 and e2. The vector u sent by
X is uniformly random as long as the number of possibilities
for x is larger than u, i.e., 2m > qn or m > n. log(q) [17] (this
is the second security condition).

Since the dimension of t is m > 1, and the scalar tTu is
masked by an error term e1, the term c1 is scalar and com-
pletely random. Therefore, according to the LWE definition, it
is intractable for X to recover the elements of t from scalar c1.
To analyze c2, let us denote the ith element of c2 as c2,i where
c2,i = tTai+e2,1+
(q/2m)�yi. In c2,i, tTai+e2,1 is scalar and
LWE term, i.e., uniformly random. Similar to the LWE encryp-
tion scheme [9], tTai+e2,1 acts like a one-time pad to hide the
message 
(q/2m)�yi. Hence, X cannot recover yi from c2,i and
therefore the proposed scheme is secure. In Section V-A, we
show that our parameter choice satisfying (8) (third security
condition) is hard and at least equivalent to 128-b security.

In LWE, the noise term plays a major role in determining
the hardness [9]. The normal distribution where the error terms
are sampled must satisfy (8). The α term must be chosen as
the largest possible while satisfying (8) for the hardness of
LWE. To quantify the hardness or security level of LWE for
a concrete set of parameters, Regev et al. exploited the dual
lattice in [17, p. 21]. The idea is to find how many opera-
tions are required to distinguish an LWE term from a uniform
distribution. This is only possible if an adversary can find a
short vector on the dual lattice. To this, let us denote a vec-
tor v and denote a short vector in the dual lattice as w. If
the vector v is an LWE vector, then the SP vTw will be an
integer [17, p. 22]. If not, then v is a uniform random vector.
Therefore, finding a short vector in dual lattice must be hard.
If the standard deviation of the error term αq/2π is not bigger
than 1/‖w‖ then it may be possible to find a short vector in
the dual lattice. Therefore, the error term must be bigger than
1/‖w‖ for LWE security. This requirement and (24) can now
be used to quantify the LWE security.

Now, using the lattice properties, i.e., the length of a shorter
vector in dual lattice is equivalent to 1/q times the length of
a shorter vector in lattice [17, p. 22]. Using this and (24),
we can say ‖w‖ ≈ (1/q).min{q, 22

√
n. log(q) log(δ)}. Therefore,
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TABLE I
REQUIREMENTS FOR PARAMETERS TO ACHIEVE 128-B SECURITY AND CORRECTNESS WHEN THE STANDARD DEVIATION IS SET FOR 4.5

if error
αq√
2π

>>
1

‖w‖ (28)

then LWE is hard. By taking 1.5 as factor, we can define the
lower bound for α from (28) as follows [17]:

α ≥ 1.5
√

2π. max
{

1/q, 2−2
√

n. log(q). log(δ)
}
. (29)

The cost of finding a shorter vector is the same as (26). In
Section V-A, we show that our parameter choice to satisfy (8)
is hard and at least equivalent to 128-b security.

A. Parameter Selection

First, let us obtain the relationship between q and m. Since
the maximum possible value for xTy is m, we split q into
m parts, i.e., the distance between the consecutive values is

(q/m)�. To obtain a correct result, as shown in (22), half of
this distance should be larger to accommodate the error term,
i.e., 
(q/2m)� > 1 or q > 2m. Table I provides the necessary
requirements for all the parameters to achieve correctness and
security. This table is a summary of requirements derived in
the previous sections. Using this table, let us obtain a concrete
set of parameters to achieve 128-b security. The same strategy
has been used to obtain the parameters for lower security (i.e.,
80, and 112 b) and higher security 256 b in Section VI.

To obtain 128-b security, we need to choose our parame-
ters in such a way that the cost (26), L ≈ 2(m/2k) ≥ 2128.
If we choose k = 2, then from (27), m ≈ n. log(q). Hence,
L ≈ 2n. log(q) ≥ 2128. Therefore, the security of the solution
would be equal to 128 b if n. log(q) ≈ m ≥ 128. Based on
this and other requirements (all are listed in Table I), we are
proposing six sets of parameters in Table II to achieve 128-b
security. These parameters have been cross validated using the
well known LWE estimator [33] (the source code for the LWE
estimator, that calculates the security complexity using six dif-
ferent algorithms such as lattice-reduction, dual-lattice attacks
etc., is available at https://bitbucket.org/malb/lwe-estimator).

In Table II, parameters n and q play a major role to ensure
128-b security. They are linked as increasing n leading to a
small q. These parameters determine the size of matrix A and
the memory requirement. The first four sets are equivalent
in terms of memory (≈ 100 MB) while the last two require
around 200 and 800 MB, respectively. As shown in the experi-
ments, the running time for the last two are significantly higher
and not useful for practical applications. For sets V and VI,
the size of q is not decreasing as much as those for the other

TABLE II
CHOICES FOR THE SECURITY PARAMETERS TO ACHIEVE

AT LEAST 128-B SECURITY

sets. The security levels for sets V and VI are 187 and 517 b,
respectively. The reason is that larger n leads to a larger m,
hence, in order to satisfy the error distribution parameter α

in (23), the value for q must be set to high. Increasing the
value for α will increase the security.

VI. EXPERIMENTAL RESULTS

In order to evaluate the proposed LWE-based PPSP scheme,
we implemented the algorithm in Java and tested on a 64-b
Windows PC with 16-GB RAM and Intel Core i5-4210U
CPU at 1.70 GHz. For performance comparison, we also
implemented the Paillier homomorphic encryption-based PPSP
scheme [21] on the same PC using Java. Additionally, we
compared our scheme with one of the most efficient PPSP
algorithms in [20]. Our test results show that the proposed
LWE-based scheme is significantly faster (at least 105 times
faster) than the Paillier homomorphic PPSP scheme and at
least twice as fast as [20] for the 128-b security.

A. Proposed Lattice-Based PPSP Scheme and Paillier
PPSP Scheme

The Paillier cryptosystem [21] is an additively homomor-
phic public-key encryption scheme. Its provable semantic
security is based on the decisional composite residuosity
problem: it is mathematically intractable to decide whether an
integer z is an n-residue modulo n2 for some composite n, i.e.,
whether there exists some y ∈ Z∗

n2 such that z = ynmodn2. Let
n = pq where p and q are two large prime numbers. A mes-
sage m ∈ Zn can be encrypted using the Paillier cryptosystem
as �m� = gmrn mod n2 where g ∈ Z∗

n2 and r ∈ Z∗n . For a given
encryption �m1� and �m2�, an encryption �m1 + m2� can be
obtained as �m1 + m2� = �m1��m2�, and multiplication of an
encryption �m1� with a constant α can be computed efficiently
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TABLE III
PAILLIER HOMOMORPHIC ENCRYPTION-BASED PPSP [21]

TABLE IV
AVERAGE RUNNING TIME FOR THE PROPOSED

AND PAILLIER-BASED PPSP SCHEMES

as �m1.α� = �m1�
α . Hence, a Paillier cryptosystem is an

additively homomorphic cryptosystem. Let us denote E() and
D() as the Paillier homomorphic encryption and decryption
functions. Using the homomorphic properties and the above
definitions, homomorphic encryption-based PPSP is described
in Table III.

According to NIST recommendation [31], [32], public-key
encryption schemes, such as RSA and the Paillier must use
3072-b long keys for encryption and decryption in order to
achieve 128-b security. Hence, to obtain the running time
for the Paillier homomorphic encryption-based PPSP, we used
3072-b long keys. We also obtained the running time for the
proposed LWE-based scheme for the first five sets of param-
eters given in Table II (the sixth set was ignored as it was
taking too much time to run). The running times averaged
over 100 executions are listed in Table IV (no parallelization
or multithreading was used).

As presented in Table IV, the result of set I has outper-
formed the other sets. This is due to the fact that even though
the security levels are equal across all the sets, when the size
for n increases, the matrix A becomes larger and requires
an increased number of multiplications. In turn, this slows
down the algorithm. With this observation, we will continue
using the parameters that belong to set I for the remainder
of our experiments presented in this article. The last column
in Table IV shows the average running time for the Paillier
scheme. The proposed scheme is at least 105 times faster than

TABLE V
PARAMETERS AND KEY SIZES FOR THE PROPOSED AND PAILLIER-BASED

PPSP SCHEMES FOR DIFFERENT LEVELS OF SECURITY

Fig. 2. Average running time for the proposed LWE PPSP scheme against
the Paillier PPSP scheme for different security levels. Note that the y-axis is
in log scale.

the Paillier PPSP scheme. The dimensions of the input vectors
for these sets are in the range of 20 000–50 000 (see the third
column in Table II).

To compare the performance of the proposed scheme for dif-
ferent security levels, a new set of parameters are provided in
Table V. Based on the NIST recommendations [31], [32], the
key sizes for the Paillier scheme is also provided in Table V.
Using this information, the average running time is plotted
in Fig. 2. While the average running time for the proposed
scheme is increasing linearly, it increases exponentially for the
Paillier scheme. It should be noted that the average running
time for the proposed scheme is around 8 s at 256-b security
(without any parallel computations or multithreading). These
results demonstrate that the proposed lattice PPSP scheme is
significantly faster than the Paillier PPSP.

B. Proposed Scheme and Randomization Technique

Table VI shows the state-of-the-art randomization-based
PPSP [4], [20]. The security of this algorithm depends on
the hardness of the factoring an integer, i.e., Ci = s(ai.α +
ci) mod p, ai �= 0. Cis are protected by s and known only
to X. If Y wants to recover the X’s input vector, Y needs to
factor all Cis to find the common s. This approach can be
seen as an approach used in RSA encryption or any public-
key encryption that relies on the hardness of factoring integers.
According to the NIST recommendation [31], [32], the size of
these integers must be around 3072 b in order to obtain 128-b
security (without loss of generality, we ignore the requirement
of prime numbers). Hence, we set k1 in Table VI to 3072 b to
compare randomization-based PPSP and the proposed lattice
PPSP scheme.
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TABLE VI
RANDOMIZATION-BASED PPSP ALGORITHM

Fig. 3. Average running time for the proposed LWE PPSP scheme against
the randomization-based PPSP scheme [4], [20] for different sizes of input
vectors.

Using this setting, the average running time for the proposed
and randomization-based PPSP schemes are obtained at 128-
b security. Fig. 3 shows the average running times for both
schemes for different input vectors whose dimensions are
between 30 000 and 50 000. The proposed scheme is at least
twice as fast compared to the randomization-based scheme
for the security parameters. It should be noted that since the
randomization-based scheme relies on the hardness of inte-
ger factorization, similar to the Paillier scheme, it is also
vulnerable for quantum attacks.

Even though the proposed scheme is developed to protect
the PP applications against quantum computers, the efficiency
analysis shows that the algorithm can be used to replace the
existing schemes. Running time in Table IV is obtained from
sequential programming. It is taking around 3 s to execute the
SP of two vectors whose dimensions are around 30 000. Nearly
2.5 s are spent on step 2 calculating (11). This equation can

TABLE VII
COMMUNICATION COST COMPARISON

be computed in parallel, i.e., tTA is equivalent to tTai where
i ≤ m. Therefore, we used multithreading features of Java
to speedup the process. By setting four threads, the average
running time has been reduced to 1.2 from 3 s.

C. Communication Complexity

Using the algorithms in Fig. 1 (the proposed LWE scheme),
Table III (the Paillier homomorphic encryption scheme-based
PPSP), and Table VI (randomization-based PPSP), we can cal-
culate the communication cost in terms of transmitted bits
between entities X and Y.

1) Total Bits Transmitted From Entity X to Entity Y:
Total number of bits required for the proposed LWE-based
PPSP scheme is n∗ log2(q). Similarly, m∗ log2(pub) and (m+
4)∗ log2(k1) number of bits are required for the Paillier-based
scheme and randomization scheme, respectively.

2) Total Bits Transmitted From Entity Y to Entity X: Total
number of bits required for the proposed LWE-based PPSP
scheme is (m+1)∗ log2(q). Similarly, log2(pub) and log2(k1)

number of bits are required for the Paillier-based scheme and
randomization scheme, respectively.

At 128-b level security, if we extract the parameters, then
n = 50, log2(q) = 570, log2(pub) = 3072, and log2(k1) =
3072. Using these parameters, Table VII shows the commu-
nication cost for all three schemes when the dimension of the
input vectors is m = 30 000. It is clear from Table VII that the
LWE scheme significantly benefits from a shorter prime num-
ber (six times smaller than the other schemes’ prime number)
and achieves six times lower data requirement to perform the
scalar computation.

VII. CONCLUSION

In this article, a novel PPSP computation using the funda-
mentals of lattice-based cryptography has been proposed. In
particular, the proposed scheme was built directly on top of
the lattice hard problems, such as the shortest integer solution
and LWEs. The 128-b encryption security has been achieved
with the proposed framework. Several validation and verifica-
tion experiments have shown that the proposed scheme is one
of the best performing schemes in terms of complexity whilst
not compromising systems security.

Challenges and Future Work: The dimensions of the input
vectors depend on n and q, i.e., m = n. log2(q). Hence, the
proposed work supports larger dimensions such as 30 000.
Even though, this is appropriate for many applications, con-
verting the solution to support smaller dimensions such as
100 would be an interesting problem that requires further
investigations.
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